KILL THE PIRATE -
THE QUEST FOR JOHN DOE

- An Introduction to Internet Piracy
in the Context of Tamil Cinema

To be Released under a
Creative Commons

“Free for All” License

COMING SOON
KILL THE PIRATE -
THE QUEST FOR JOHN DOE

An Introduction to Internet Piracy
in the Context of Tamil Cinema

Sample Chapter

Attribution-NonCommercial-ShareAlike 4.0 International

Es Chris
http://killthepirate.wordpress.com
Twitter: @kill_the_pirate
Before we get into the core aspect of the book, trying to trace the evolution of Piracy, its effects on Legitimate Digital Media Distribution, the challenges faced by the Legitimate Industry along the path of Evolution and Monetization, the History of Antipiracy Efforts in India, mainly focussing on TamilNadu and various other aspects related to the central theme of the book, we shall just try to explain this complex phenomenon using simple pictorial representations, in this chapter.
Let us consider the above example, of a simple system. There is only 1 input variable and 1 output variable that totally depends on the 1 single input variable. By tweaking ‘A’, in the right direction, it is possible to modify or control the value of ‘1’.

So, let us consider a simple real world analogy here. ‘If you catch the Pirate and put him in jail, Piracy will stop.’

This is a perfectly valid statement in a simple Ecosystem, because if the Pirate is the guy responsible for spreading Piracy in the first place, and if you catch him and throw him in jail, Piracy should logically stop.

Now, let us say the ecosystem is a little bit bigger, but is still a relatively simple ecosystem.
Compared to the previous example, there are 2 more additional variables here. By theory of mapping, we can draw some conclusions, in this new Ecosystem.

In this graph, ‘1’ is dependent on ‘A’ and ‘2’ is dependent on ‘B’. But also ‘A’ & ‘B’ have a defined relationship between themselves. So, if a result ‘1’ is dependent on ‘A’, and ‘A’ & ‘B’ have a defined relationship between them, then it is possible to predict or control the result of ‘2’, based entirely on ‘A’, ‘B’ & ‘1’.

So, extending our previous analogy, in this ecosystem one might feel that, “Piracy will stop if we arrest the Pirate, and at the same time, if we provide legitimate, better quality discs at close to the price point that the Pirate offers, then Piracy will stop and People will therefore logically start buying legitimate Discs.”

Again, if these were the only variables in the ecosystem, then it might be a right conclusion.

Now, let us consider a third ecosystem, much more complex than the second one, which we just discussed.
In this ecosystem, there are additional input parameters. Now, our area of interest is in defining the relationship between ‘A’ & ‘1’, and our objective should be if we can control the value of ‘1’ using ‘A’ alone.

Before we get to that point, we have to see two small things which are new to this now bigger ecosystem.
I) We can see that although we want to control ‘1’ using ‘A’ entirely, it is now not possible, because some new variables ‘B’, ‘C’ and ‘D’ are also deciding the value of ‘1’.

But, their prime objective may not necessarily entirely be the control of ‘1’, but within the scope of their job, they do have some influence on the final value of ‘1’.

So, in order for ‘A’ to have the desired impact of controlling the value of ‘1’, ‘A’ also needs the help of ‘B’, ‘C’ and ‘D’. Only with the cooperation of ‘B’, ‘C’ and ‘D’, can ‘A’ now achieve the desired result, because ‘A’ alone is now not determining the value of ‘1’ now.

So, let us take another small real life example here.

If a media company ‘A’ wishes to control AntiPiracy on the Internet, and if it realizes that every day, millions of people are getting access to the infringing URL links of their Copyrighted Works, through a search engine, ‘A’ can now contact the Search Engine by making a DMCA request to modify subsequent search results, so that users do not find these infringing links through the search engine, anymore.

This part of the logic is good and should succeed in stopping users from finding allegedly infringing links through a Search Engine.

But the main objective of a Search Engine is not to defeat Piracy. It’s objective is to crawl millions of new URLs being created on the Internet everyday, index their data and provide the best Search results to its users. So, within its scope, the Search engine being a legitimate entity and abiding by law, will help the Copyright Holder to arrest the flow of piracy, after receiving a formal DMCA take down request and
processing it, and stop publishing links, in its subsequent search results, of those requested URLs after it confirms on its own, that these URLs were indeed hosting infringing content. If the URL requested is not infringing on the requester’s rights, the Search Engine simply ignores the Request, and the legitimate results will continue to appear in subsequent search results.

So now ‘A’, the copyright Holder can now send ‘B’, the Search Engine the request and the Search Engine will now take down the infringing links. This should stop Piracy in theory only as long as A and B themselves are constant, and arrive at a common functional definition between themselves, on the aspect of ‘Piracy control’.

II) Now, if you see the graph clearly, in this case, you can notice, that ‘A’, ‘B’, ‘C’ and ‘D’ are no longer static functions. They themselves are changing with time, and are now dependent on internal micro variables (a1, a2..), (b1, b2..), (c1,c2..), (d1, d2..) etc

This means that ‘A’ can control its internal variables a1, a2, a3 to determine the futuristic value of ‘A’ only because a1, a2 and a3 are within A’s control. But ‘A’ cannot decide the control of variables say b1, c2 or d3 because they are not in ‘A’s’ control, which means that a function that was created earlier between ‘A’ & ‘B’ to control ‘1’, could become obsolete with time, as the parameters of b1, b2 and b3 start getting applied and are constantly changing the value of ‘B’.

So, in this above example, if the Copyright agency sought the Search Engine’s help, the Search Engine’s singular point of focus cannot be AntiPiracy control, alone. It will have 1000s of microfunctions, which
might work in Random ways, and Antipiracy control maybe just one of the several functions.

The Search engine cannot drastically tune itself to work with 1 antipiracy function ‘A’, if it upsets the performance of its other 999 microfunctions. So, only gradual change will happen by the Search Engine, so that it is helping ‘A’, as it is bound to legally and yet at the same time, not disturb its 999 other microfunctions.

Citing from the ‘How Google Fights Piracy’ report, “In addition to removing pages from search results when notified by copyright owners, Google also factors in the number of valid copyright removal notices we receive for any given site as one signal among the hundreds that we take into account when ranking search results. Consequently, sites with high numbers of removal notices may appear lower in search results. This ranking change helps users find legitimate, quality sources of content more easily.”

More over, the other small variables (b1, c2, d3.. Etc) are constantly evolving, which means that other than periodically communicating with other legitimate input players ‘B’, ‘C’ and ‘D’, A cannot have a continued maximal impact on controlling 1 and has to periodically keep communicating with other input players ‘B’, ‘C’ and ‘D’. 
So, now let us consider an even more complex EcoSystem, as shown in the above graph (#4), that has multiple external variables, ‘2’, ‘3’ and ‘4’ as well. What is making things even more complex now, is that the external variables ‘2’, ‘3’ and ‘4’ are themselves creating an impact on the value of ‘1’, which ‘A’ has no way of controlling.

Some of these create a situation of a conundrum like a seesaw i.e “When one side is raised to gain some benefit, some other side gets lowered creating a loss”. This, I would like to refer to as the ‘External Variable Conundrum’, I shall speak about this impact in later chapters.
The bigger headache now, is that not only do ‘1’, ‘2’, ‘3’ and ‘4’ influence each other, but are now returning values back, which are actually influencing the future values of ‘A’, ‘B’, ‘C’ and ‘D’. Some times, the values of impact are so random, that barring some superficial control, ‘A’ literally has no meaningful individual control impact on ‘1’ anymore.

For instance, A may claim that 5 people were arrested for Antipiracy activities 10 years back, 50 last year and 500 this year. Or alternatively, A may claim that 10,000 infringing links were taken down last year, 100,000 this year with a target of 200,000 next year. This shows growth in Antipiracy control at a literal level, but it has no meaning practically when millions of discs continue to be physically pirated, and copies of a newly released movie find their way into the Internet typically within hours of its release. The context is also more important because it is much more easier and cheaper to create, duplicate not just URLs but entire websites, but the cost and complexity of taking them down is drastically huge and complex.

If in such a small example that had just 4 input variables & 4 external variables and if ‘A’ could not control ‘1’, then the Internet is a much larger ecosystem with hundreds of Input and Output variables and millions of smaller microvariables.

This is a very complex ecosystem, and this is the reason why fighting Piracy in this complex ecosystem is a tremendous challenge. So, having done with this small pictorial introduction, let us see some of the inner workings of this Ecosystem in more detail in subsequent individual chapters.